New Binaries Among *Fermi*Unassociated Sources

Laura Chomiuk (Michigan State)

Jay Strader, Sam Swihart, Ray Li (Michigan State), Teddy Cheung (NRL), Dave Sand (Texas Tech), James Miller-Jones (Curtin), Craig Heinke (Alberta)

Large swaths of discovery space remain— including Y-ray emitting binary stars

Fermi expands MSP parameter space

Fermi expands MSP parameter space

Fermi expands MSP parameter space

Optical + X-ray + radio follow-up of un-IDed *Fermi* sources is a promising route to discovering new classes of (stellar) Y-ray sources.

4.1m SOAR telescope

MSU + NOAO + Brazil + UNC

1FGL J1417.7-4407

Chandra data + 1FGL error circle

1FGL J1417.7-4407

DSS image +
Chandra
position +
1FGL error
circle

Optical counterpart to 1FGL J1417? Looks periodic!

Optical spectrum is a late G star

Almost always shows H-alpha in emission

Radial
velocities from
photospheric
absorption lines
trace the orbit
of the secondary

K = 116 km/sP = 5.374 days

Radial
velocities from
photospheric
absorption lines
trace the orbit
of the secondary

+

Multi-color photometry constrains inclination

Radial
velocities from
photospheric
absorption lines
trace the orbit
of the secondary

+

Multi-color photometry constrains inclination

Long Period
(5.4 days)→
Red giant
secondary!

J1417 is a progenitor system of "normal" MSPs

2013

Roberts

J1417 HX

Emission line profile is double-peaked at most epochs, implying an accretion disk

J1417: a transitional MSP in the accretion-powered (LMXB-like) state?

X-ray luminosity too high for pulsar state:
 more energetic shock due to wind(?)

J1417 Fermi/LAT Emission

spectrum is power-law with index ~ 2.4, curvature not required

J1417: γ-ray luminosity higher than nearly all MSPs

J1417: A Huntsman under control?

J1417 detected as a millisecond pulsar!

Given the evidence for a ~constant accretion disk over the last ~2 yr, some (uncomfortable) options:

- J1417 is a transitional MSP with short (days?) transition timescales
- Despite the presence of a disk in J1417, no accretion actually occurs
- It is possible to have the simultaneous occurrence of accretion and a radio pulsar

Progress on J1417:

- Look for X-ray mode switching in Chandra data (approved)
- Radio observations to search for (or rule out) a bright jet
- Ongoing optical observations to monitor state of disk
- Ongoing Fermi observations to look for variability
- Pulsar timing observations will yield better constraints on mass of neutron star

J1417 is not alone

We have at least one more very similar object:

Fermi source with neutron star primary and giant secondary

Addendum: 1FGL J1018.6-5856 has a neutron star Ηγ 60 companion. 40 radial velocity (km/s) 20 He II 60 40 20

0.5

phase

Strader et al 2015b

IFGL J0523.5-2529

 $K_2 = 190 \text{ km/s}$

P ~ 0.688 days

 $e \sim 0.04$

redback with eccentricity: very unusual

Parameters for J0523

$$M_1 = 2.08^{+0.36}_{-0.28} M_{\odot}$$

$$M_2 = 1.28^{+0.31}_{-0.25} M_{\odot}$$

Again, a massive neutron star (with a large uncertainty—could improve a little)

The more unusual conclusion is that the secondary is so massive—much more so than any other redback

Parameters for J0523

$$M_1 = 2.08^{+0.36}_{-0.28} M_{\odot}$$

$$M_2 = 1.28^{+0.31}_{-0.25} M_{\odot}$$

Again, a massive neutron star (with a large uncertainty—could improve a little)

The more unusual conclusion is that the secondary is so massive—much more so than any other redback

Detecting primary as a pulsar would help a lot!
We have obtained 6 hr of GBT time to search for a pulsar (search ongoing)

High-energy emission

Evidence for orbital variability in gamma-rays above 2 GeV: suggests some gamma-ray emission from a shock